A Parallel High-Order Discontinuous Galerkin Shallow Water Model
نویسندگان
چکیده
The depth-integrated shallow water equations are frequently used for simulating geophysical flows, such as storm-surges, tsunamis and river flooding. In this paper a parallel shallow water solver using an unstructured high-order discontinuous Galerkin method is presented. The spatial discretization of the model is based on the Nektar++ spectral/hp library and the model is numerically shown to exhibit the expected exponential convergence. The parallelism of the model has been achieved within the Cactus Framework. The model has so far been executed successfully on up to 128 cores and it is shown that both weak and strong scaling are largely independent of the spatial order of the scheme. Results are also presented for the wave flume interaction with five upright cylinders.
منابع مشابه
Nodal High-Order Discontinuous GalerkinMethods for the Spherical ShallowWater Equations
We develop and evaluate a high-order discontinuous Galerkin method for the solution of the shallow water equations on the sphere. To overcome well known problems with polar singularities, we consider the shallow water equations in Cartesian coordinates, augmented with a Lagrange multiplier to ensure that fluid particles are constrained to the spherical surface. The global solutions are represen...
متن کاملDiscontinuous Galerkin Spectral/hp Element Modelling of Dispersive Shallow Water Systems
Two-dimensional shallow water systems are frequently used in engineering practice to model environmental flows. The benefit of these systems are that, by integration over the water depth, a two-dimensional system is obtained which approximates the full three-dimensional problem. Nevertheless, for most applications the need to propagate waves over many wavelengths means that the numerical soluti...
متن کاملPositivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations
Shallow water equations with a non-flat bottom topography have been widely used to model flows in rivers and coastal areas. An important difficulty arising in these simulations is the appearance of dry areas, as standard numerical methods may fail in the presence of these areas. These equations also have steady state solutions in which the flux gradients are nonzero but exactly balanced by the ...
متن کاملParallelisation of a Discontinuous Galerkin Solver for the Shallow Water Equation
This master’s thesis is concerned with the sequential and parallel implementations of a Discontinuous-Galerkin Solver for the shallow water equations in a newly developed framework using stacks. One of the other main aspects of the thesis is to keep a strong focus on memory efficiency using Sierpinski space-filling curves, which avoid redundant memory to keep the neighborhood information of the...
متن کاملPositivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes
The shallow water equations model flows in rivers and coastal areas and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. In [36], the authors constructed high order discontinuous Galerkin methods for the shallow water equations which can maintain the still water steady state exactly, and at the same time can preserve the nonnegativity of the water height without...
متن کامل